Fast Raspberry Pi 4 Storage Benchmarks

UPDATE: The 2022 storage benchmarks are now available!

We’ve now received over 20,000 benchmarks at Pi Benchmarks! These are submitted by regular people from all over the world.

In celebration of that milestone as well as the launch of the 8GB Raspberry Pi 4* take a closer look at which device you should choose for your Raspberry Pi 4 as determined by science and measurement!

Best Performing Devices

Solid State Drive (SSD)

Samsung 980 Pro 2TB NVMe SSD
Samsung 980 Pro NVMe SSD

The Samsung 980 Pro (NVMe) is a professional grade SSD and one of the fastest in the world. The Samsung NVMe drives have been at the top of this category for a long time and are well trusted for both their performance and reliability / long life.

Links: AliExpress*,*,*,*,*,*,*,*,*,*,*,*,*,*

Secure Digital (SD / MicroSD) Card

SanDisk Extreme A1
SanDisk Extreme A1

The SanDisk Extreme A1-A2 SD card has the best scoring SD card on for years and is second in popularity only to the SanDisk Ultra (often included in combo kits). The application class (A1) means random I/O speeds (very important when running an OS) have to meet a higher standard. There’s no benefit on the Pi for A2 right now so get whichever is cheaper/available.

Links: AliExpress*,*,*,*,*,*,*,*,*,*,*,*,*,*

The SanDisk Extreme A2 is barely edging out the SanDisk Extreme A1 variant for the top spot. The difference is tiny though, so you should pick whichever one is cheaper at the moment.

Benchmarking / Testing Storage

If you want to verify your drive’s performance you may want to run my storage benchmark with:

sudo curl | sudo bash

If you search for the model of your drive on Pi Benchmarks you can compare your score with others and make sure the drive is performing correctly!

Storage Adapter Performance Note

The type of USB adapter you use (if you aren’t using a SD card) can have a big effect on performance. I cover which adapters are good and which should be avoided more comprehensively in my Raspberry Pi 4 USB Booting Post.

The most popular one at time of writing is the StarTech USB 3.1 to 2.5″ SATA adapter*.

Top 20 Fastest Storage Devices

# Brand Link Average (All) Average (Pi 4) Fastest Score Slowest Score Total Benchmarks
1 Samsung 970 Evo Plus*
Samsung 970 Evo Plus
9563 9563 10840 2805 49
2 Patriot P200 Series*
Patriot P200 Series
9372 9372 10170 8830 6
3 Crucial P1 M.2 Series*
Crucial P1 M.2 Series
8602 8602 9369 6737 6
4 Western Digital Blue SN550 NVME*
Western Digital Blue SN550 NVME
8396 8396 9799 7079 10
5 Western Digital Black SN750 Series*
Western Digital Black SN750 Series
8381 8381 8650 8229 4
6 Samsung 860 Pro*
Samsung 860 Pro
8325 8325 9523 4895 15
7 Samsung T5 Portable*
Samsung T5 Portable
8299 8339 11505 2721 272
8 Samsung 850 Evo mSATA*
Samsung 850 Evo mSATA
8284 8284 9617 5325 20
9 Samsung T7 Portable SSD*
Samsung T7 Portable SSD
8104 8104 8494 7834 3
10 Micron 1100 M.2 Series*
Micron 1100 M.2 Series
8063 8063 9012 6605 4
11 Transcend MTS600 Series*
Transcend MTS600 Series
8022 8022 9274 6967 4
12 SanDisk Extreme 500 Portable*
SanDisk Extreme 500 Portable
8016 8438 10619 2693 25
13 Kingston A2000 Series*
Kingston A2000 Series

8014 8014 9503 5207 10
14 AData SU635*
AData SU635

7953 7953 8678 7529 5
15 SKhynix SC311*
SKhynix SC311

7940 7940 8427 6355 8
16 Crucial MX300 M.2 Series*
Crucial MX300 M.2 Series

7739 7739 8829 6133 8
17 SanDisk Extreme Portable*
SanDisk Extreme Portable

7720 8000 11337 2449 106
18 KingSpec Z3 Portable Series*
KingSpec Z3 Portable Series

7714 8035 10458 1591 88
19 Team GX1 Series*
Team GX1 Series

7686 7686 8792 4660 8
20 Samsung T3 Portable*
Samsung T3 Portable

7632 7632 9431 2509 22

Top 10 Fastest Secure Digital SD / MicroSD Cards

Rank Brand Link Average (All) Average (Pi 4) Fastest Score Slowest Score Total Benchmarks
1 SanDisk Extreme A2 (SEXXX C10 V30 U3)*
SanDisk Extreme (SEXXX C10 V30 U3)
1595 1659 1747 1167 12
2 SanDisk Extreme A1 (SEXXX A1 C10 V30 U3)*
SanDisk Extreme (SEXXX A1 C10 V30 U3)
1588 1669 1808 858 141
3 Transcend (USD A1 C10 V30 U3)*
Transcend (USD A1 C10 V30 U3)
1569 1569 1667 1363 6
4 SanDisk Extreme Pro (SPXXX A1 C10 V30 U3)*
SanDisk Extreme Pro (SPXXX A1 C10 V30 U3)

1568 1606 2289 651 136
5 Lexar 633x*
Lexar 633x

1554 1554 1810 1028 14
6 Kingston Canvas React (SDCHE A1 C10 V10 U1)*
Kingston Canvas React (SDCHE A1 C10 V10 U1)

1554 1554 1632 1465 6
7 SanDisk Extreme Pro (SPXXX C10 V30 U3)*
SanDisk Extreme Pro (SPXXX C10 V30 U3)

1520 1607 1709 1260 4
8 Toshiba SD (SA32G A1 C10 U1)*
Toshiba SD (SA32G A1 C10 U1)
1456 1525 1616 1178 5
9 Transcend (USD A1 C10 V10 U3)*
Transcend (USD A1 C10 V10 U3)

1436 1436 1528 1135 7
10 AData Premier Pro*
AData Premier Pro
1412 1412 1558 1316 13

Benchmarking Your Own Device

I highly recommend benchmarking your own storage device. To run the benchmark paste/type:

sudo curl | sudo bash

The benchmark only takes a few minutes and will give you a lot of information about whether your Pi is performing well or not. Storage is definitely the biggest performance variation between otherwise identical Pi setups.

Compare your score with others at the full benchmark browsing site Pi Benchmarks. Leave a comment letting us know how you did or if you need any help!

Power Requirements

Most types of storage adapters can be powered by the Pi itself. One notable exception is NVMe enclosures. Throughout the years we have had hundreds of comments from people who had no trouble powering 2.5″ SATA enclosures but couldn’t get a NVMe one to work at all without a powered USB hub.

Very large older 3.5″ SATA drives are known to require more power than the Pi can provide as well as some types of very high performance models that were designed to burn more power to get extra performance gains.

For solid state storage older models of solid state drives (SSDs) are also known to draw more power than their newer counterparts. If you have a drive that you think may fall into this category then definitely be on the lookout for power related issues and extra cautious about your power setup. High end “extreme” performance models also tend to draw more power (Samsung 970 NVMe drives* are some of the fastest in the world but also pretty power hungry for the Pi).

Insufficient Power Symptoms

Symptoms of a lack of power to the drive can include the system only booting sometimes (or not at all) or working for a while and then locking up. Just because the drive boots does not mean it is getting enough power.

Some commenters on previous articles have described this as working fine until there was a sudden spike in CPU usage while they tried to do several things at once (high CPU, accessing storage, activating various hardware all at once) and then they would get a lockup/crash.

This is because the Pi is teetering on the edge of not having enough power and that spike caused it to drop enough where the drive actually lost power (likely only for tiny fractions of a second). This is enough instability to easily cause a crash and worse if it happened to be in the middle of writing something important! Usually nothing will happen other than you’ll have to restart the Pi but because of the risk of data loss and eventually corrupting files. That being said, if you’re particularly unlucky you will have to fsck the drive or potentially even reimage it if fsck is unable to repair the damage!

The best answer is to test for stability. Do this by stressing out the Pi and make sure you are doing activities that stress the CPU and storage at the same time like browsing the web, etc. and if you can do that for a few hours/days without a lockup/crash then you have a stable power setup!

Powered USB Hub Solution

For NVMe enclosures and power hungry drives I personally use this Sabrent powered USB hub and have been recommending it here on the blog for a long time:

Sabrent Powered USB Hub
Sabrent Powered USB 3.0 Hub

The Sabrent powered USB hub delivers a whopping 2.5A of dedicated power for your USB attached devices. This is almost as much as the Pi adapter itself is rated for (3.0A). It will easily power the most thirsty of setups such as NVMe enclosures.

Links: AliExpress*,*,*,*,*,*,*,*,*,*

Note: Make sure Amazon doesn’t try to take you to the non-powered version and that it’s the one with the AC adapter that plugs in to provide extra power

If this hub isn’t an option for you and you don’t have one already you can try with it then look in the reviews for people saying that it is working with Raspberry Pi. Some powered USB hubs will not play nice with the Pi so before buying one definitely check reviews and do some careful research about what to expect with the Raspberry Pi!

Oversized Power Adapter Solution

This solution will work for setups that are right on the border of having enough and not having enough power. An example would be if you can get a stable boot but are getting occasional lockups/freezes when the power dips just below the threshold it needs.

If you are using a powerful NVMe drive/enclosure combo like the ICY BOX with a high performance Samsung NVMe drive even with the extra 500 mA it will still not even boot. I have had these oversized adapters and they are great but for a very powerful drive/adapter combination you are going to need more than 500 mA.

It’s a lot less extra wires and one less AC plug though if you are right on the border and just need a little bit more. It will depend on your individual drive/adapter combo whether it’s enough or you will have to go full powered USB hub!

CanaKit 3.5A Power Adapter
CanaKit 3.5A Power Adapter

The CanaKit 3.5A adapter has an extra half an amp (500 mA) of capacity to give some breathing room to your accessories. This is bigger than the official Pi power supply which provides 3.0A.


In previous articles readers have told me that this specific adapter can be hard to find outside of North America. I tried to link to as many regions as I could find it in but there should be something equivalent in your region (it just likely won’t be specifically designed for the Pi but will be a more generic USB-C charger).

Look for a USB-C power supply rated to supply around 3.5A. 3.0A or lower won’t do much good as that is almost certainly what you already are using. You can use a higher one (at your own risk). The largest one I’ve ever used is my Dell laptop’s 30W USB-C power adapter. It’s probably not a good idea to go too much bigger than this or to even use one this big over the long term (I didn’t, just for occasional testing and as a emergency backup) but USB-C does have some specification improvements related to power management that seem to provide some flexibility here.

Power Limits

The Pi can only pass through a limited amount of extra power. On the Pi 4 this is up to 1.2A of extra power for peripherals (combined) on top of the board’s 3.0A power rating. This is much more than the Pi 2 and some other previous models could do which was only around 0.5A. This also means that getting a power adapter bigger than about 4.2A of rated current is pointless because the Pi won’t allow any more power to flow through to the board to the peripherals through USB anyway even if it’s available.

I’m oversimplifying a little bit to illustrate the point but if you want the full technical details they are available here in the Raspberry Pi USB documentation. The important takeaway is that going much above 3.5-4.0A or so will not actually provide any more power to the Pi because of these limits. If you’ve hit this ceiling and it still isn’t enough you need to go powered USB hub.

I’ve also used ones that charge cell phones to power Pis before and these ones are the most likely to fall into a range close to what the Pi uses. Most of the ones I had around the house for phones were 2.5A (just barely not enough) or 3.0A so it was enough for a backup spare but not enough to provide extra power. Nevertheless, it’s definitely worth it to check what you already have around and see if there are USB-C chargers around to test with!

Note that a powered USB hub essentially bypasses these limits because the power for your peripherals such as your USB storage will come from the AC adapter connection to the powered USB hub instead of the Pi having to provide that power.

Powered USB Hub Troubleshooting

Most hubs including the Sabrent one above can feed back power into the Pi which can cause it to not boot when the power is connected. The reason for this is that the Pi is detecting power and is trying to power on using that source but the current provided isn’t enough for the Pi to actually boot.

The solution to this is to remove the USB hub’s connection from your Pi momentarily and then connect the power. Plug your USB hub back in quickly after reconnecting the Pi’s power (if you have native USB booting set up) and unless you really fumble with reconnecting it you will have it plugged in well before it tries to boot from the SSD!

If this trick doesn’t work then unfortunately you may have a powered USB hub that is not going to work with the Pi. It’s worth checking to see if there are any firmware updates available for your USB hub before you give up on it as some readers have let me know in the comments of previous articles that they were able to get some hubs working after a firmware upgrade!

Other Resources

If you’ve having firmware problems with your Pi such as it blinking and refusing to do anything else or know that your firmware is very old (from before native USB booting was added) check out my Raspberry Pi Bootloader Firmware Update / Restore Guide

To check out the best storage adapters to use with your Pi check out my Best Working Storage Adapters Guide here


Inline Feedbacks
View all comments

1 year ago

Hello James –

I have a Samsung 970 EVO Plus 500GB and I’m attempting to compare benchmark numbers to your site to make sure everything on my pi is properly configured. Your benchmark script is very helpful but its unclear to me what I should be looking for. I’m expecting a score somewhere near `9563` in my report – but where?


Matt Kime
Matt Kime
1 year ago

Thanks for confirming.

To help others, here’s more info on my setup –

HOGORE USB 3.2/ 3.1 Gen 2 Hub, 4-Port Powered USB Hub (USB-C to USB-A x3 & USB-C) w/ power adapter
XAOSUN 3.1 USB C Female to USB Male Adapter
TDBT M.2 NVMe SSD Enclosure with Heat Sink, 10Gbps USB-C to PCIe NVMe M.2 Hard Drive Enclosure with Thermal Cooling Pad

1 year ago

I bought specifically the Samsung T5 after reading the AnandTech article and its very low consumption.
It works great out of the box with the a 5V-3A power supply. I still need to add a fan instead of the heatsinks, nevertheless it should be fine.

Tyler sojka
Tyler sojka
1 year ago

hello everyone,
im having some issues! after looking through this guide I recently bought a western digital blue sn550 nvme 250gb, and theo tdbt m.2 nvme enclosure, got my pi 4 to boot using this set up, and ran this test. my score was 2526, which is FAR below even the lowest recorded score. ive been trying to troubleshoot why this might be and i cant seem to find a solution. all of the videos ive watched with people booting from a ssd give them hparm speeds of 100-600 mb/s, while mine is hovering around 30. any ideas?

Calvin Nel
Calvin Nel
1 year ago
Reply to  Tyler sojka

any update?

Austin Vojta
Austin Vojta
1 year ago

James — seems we can no longer download the results to a CSV or .xlsx document? Did you make that change intentionally, or will the functionality be added back at some point? I would like to sort through results on my own.

Jim "JR"
Jim "JR"
2 years ago


Two questions:

1. I have been running your benchmark and have submitted numerous reports on various SD and USB devices I have here, all as (using “European” quotes for clarity), and yet, interestingly enough, none – not a single one – has shown up on your list. I did a new test of a Seagate Expansion SSD (500G) on my Pi-4 test rig and submitted it on 2020-10-14, and it has not yet shown up. Nor bustin’ chops, but I am curious. Maybe other significant data is also being swallowed up in some black hole somewhere?

2. When running tests on my devices, I have noticed that several tests on the same device, on the same port (USB/micro SD), on the same system, using an identical image, show what might be significant variation.

For example:
Today I purchased the Seagate Expansion SSD device – an external USB-3 device that contains a SSD instead of a standard mechanical hard drive.

I ran a total of ten passes of your test on it and recorded all the results. (I turned off my WiFi at the end of the test to avoid spamming your site with tests.)

The “score” for this device, run exactly the same way over and over again in succession, ranged from a low of 6477 to a high of 7394 – a difference of almost exactly 12.5%.

I have noticed a similar effect when testing other devices though I have not run such a test as this because the other devices were too slow.

I would hope to believe that the device itself doesn’t have a 12 to 13% variation in speed based on the phases of the moon or whatever. I also shudder to think that my Pi-4 is so inconsistent.

Do you have any idea why there should be such a variation? Note that the variation seems to be random in nature instead of steadily increasing or decreasing.


Jim “JR”

2 years ago

This is great! FYI, the reason that that particular micro-SD card at the top is so popular is because it is sold in a 2-pack from Costco in the US for only $45, making it out to $22.50 per card! So they are popular because they are cheap!

2 years ago

Hi James,
thanks for providing such very deep information.
Over the time I have done several tests with Raspi 4 (4GB) and Samsung 860 EVO 250 GB (e.g. #5367 on 2019-12-18 and #32570 on 2020-09-28).
I have done firmware and bootloader updates as soon as they where in stable state. I believe my updates have made the system more stable and efficient due to less heat dissipation.
On the other hand during time the score went worse.
I have done software updates of your software too in order to stay comparable.
What do you think about? What may be the root cause of this slow down?
Regards, H.

Jim "JR"
Jim "JR"
2 years ago
Reply to  DerFritz

Assuming you’re using an SD card, mounted within the Pi’s SD slot, have you tried a TRIM of the device?

Viz.: fstrim -v /

Part of the problem may be that you are continually reading and writing from the device and solid-state devices like SSD’s or SD cards do not necessarily handle TRIM very well, especially if you are running something repeatedly.

1 year ago
Reply to  Jim "JR"

Hi Jim,
thanks for the hint.
This is not a SD card. The Samsung 860 EVO is a mSATA device on a Lycom Adapter (in a USB3-version with controller from Renesas/NEC). Anyway, the provided link worked.
However, after trimming the device is not faster.